STATISTICAL CHALLENGES IN DESIGNING COMBINATION-THERAPY TRIALS IN ONCOLOGY

RAM SURESH, PH.D.
AMGEN INC.
DISCLAIMER

The views expressed herein represent those of the presenter and do not necessarily represent the views or practices of the presenter’s employer or any other party.
OUTLINE

- Oncology Landscape
- Progression on PD L(1) Therapy
- Single-Arm Trials
- Challenges in Designing Trials – A SCLC Example
- Summary
ONCOLOGY LANDSCAPE

- Recently, CTLA-4 and PD-(L)1 therapies have been approved and became SOC for several indications.
- Development of novel combination regimens has become the focus of industry.
- Bispecific ADCs, BiTEs and Targeted therapies are under investigation.
- Most combinations under investigation are with PD-(L)1 inhibitors.
PROGRESSION ON PD-(L)1 THERAPY

• Definition of Relapse/Refractory Disease
 – Assessing PD-(L)1 response is difficult because response to immunotherapies behaves differently than traditional cytotoxic agents.
 – How to identify patient population whose disease has truly progressed past PD-(L)1 inhibitors is complex and challenging

• Three main principles:
 1. Adequate exposure to PD-(L)1 therapies before progression
 2. Correctly identify and confirming progressive disease
 3. Identify the likelihood of responding to re-exposure to PD-(L)1 therapies.
PROGRESSION ON PD-(L)1 THERAPY
EXAMPLE DEFINITIONS FROM INDUSTRY

• Example 1: PD-1 treatment progression is defined by meeting all of the following criteria:
 – Has received at least 2 doses of an approved PD-(L)1 mAb
 – Has demonstrated disease progression after PD-(L)1 as defined by RECIST v1.1. The initial evidence of disease progression (PD) is to be confirmed by a second assessment no less than four weeks from the date of the first documented PD, in the absence of rapid clinical progression
 – Progressive disease has been documented within 12 weeks from the last dose of PD-(L)1 mAb

• Example 2: Three distinct patient populations that are important to study separately:
 • Patients who do not respond & progress on PD-(L)1 (or within 6 months of treatment)
 • Patients who progress after initial response while on PD-(L)1
 • Patients who progress after initial response to PD-(L)1 off drug

• Additional Criteria:
 • Patients must have confirmed disease progression on PD-(L)1 therapy
 • Previous exposure to PD-(L)1 containing regimen for at least 12 consecutive weeks
 • Progression must be while on treatment with PD-(L)1 or within 6 months of discontinuing PD-(L)1

Source: immuno-oncology combination drug development for patients with disease progression after initial anti-PD-(L)1 therapy: a friends of cancer research whitepaper
EXAMPLE STARTGIES

- **Different approaches in dealing withipi-refractory population**

<table>
<thead>
<tr>
<th>Pembrolizumab: KEYNOTE-001 (Uncontrolled Study)</th>
<th>Nivolumab: CheckMate 037 (Controlled Study)</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Previously treated with at least 2 doses of ipilimumab 3 mg/kg or higher administered every 3 weeks</td>
<td>• Patients must have had progression after anti-CTLA-4 treatment, such as ipilimumab</td>
</tr>
<tr>
<td>• Confirmed disease progression using immune related response criteria within 24 weeks of the last dose of ipilimumab</td>
<td></td>
</tr>
</tbody>
</table>

ORR result: 24%

ORR result: 31.7% vs 10.6%

Both trials served as pivotal evidence to support AA inipi-refractory metastatic melanoma
SINGLE-ARM TRIALS FOR ACCELERATED APPROVAL

• General requirements
 – Unmet Clinical need
 – Centrally Confirmed ORR, Durability
 – Six-month follow-up on responses

• Statistical Approach
• Lower limit of 95% Confidence Interval to exceed pre-established benchmark
• Demonstration of durability
EXAMPLE OF SINGLE-ARM APPROVAL OF COMBINATION THERAPY

- On Sep 17th, 2019, FDA granted accelerated approval for Lenvatinib + Pembrolizumab for advanced endometrial carcinoma that is not microsatellite instability high (MSI-H) or mismatch repair deficient (dMMR) and who have disease progression following prior systemic therapy.
- Accelerated approval based on a single arm phase 2 study (KEYNOTE-146)

KEYNOTE-146 Efficacy Results

<table>
<thead>
<tr>
<th>Objective Response Rate (ORR)</th>
<th>LENVIMA with pembrolizumab N=94*</th>
</tr>
</thead>
<tbody>
<tr>
<td>ORR (95% CI)</td>
<td>38.3% (29%, 49%)</td>
</tr>
<tr>
<td>Complete response, n (%)</td>
<td>10 (10.6%)</td>
</tr>
<tr>
<td>Partial response, n (%)</td>
<td>26 (27.7%)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration of Response</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Median in months (range)</td>
<td>NR (1.2+, 33.1+)†</td>
</tr>
<tr>
<td>Duration of response >6 months, n (%)</td>
<td>25 (69%)</td>
</tr>
</tbody>
</table>

Tumor assessments were based on RECIST 1.1 per independent radiologic review committee (IRC). All responses were confirmed.

*Median follow-up time of 18.7 months
†Based on patients (n=56) with a response by independent review
+ Censored at data cutoff
CI = confidence interval; NR= Not reached.

Source: Lenvatinib USPI

Historical results of Pembro monotherapy in endometrial cancer was evaluated in Keynote-028, with an ORR of 13% (3/23)
KRAS G12C MUTATED NSCLC

- **KRAS G12C** mutation is found in approximately 13% of lung cancer, 3% of colorectal cancer and appendix cancer, and 1%–3% of other solid tumors

- **Unmet Clinical Need in second line**
 - Currently, there is no approved therapy targeting this mutation
 - **KRAS p.G12C** mutation rarely occurs concomitantly with other targetable mutations (Scheffler et al, 2018; Gainor et al, 2013)
 - Standard of care outcomes for advanced/metastatic NSCLC subjects in 2L+, following first line platinum-containing chemotherapy doublets (typically cisplatin/pemetrexed), are poor (Gridelli et al, 2018; Rittmeyer et al, 2017; Herbst et al, 2016; Borghaei et al, 2015; Herbst et al, 2007)
 - Treatment outcomes are poor in the unselected population
 - For docetaxel and ramucirumab: ORR of <23% and mPFS and mOS of 4.5 and 10.5 months respectively
DESIGNING A SINGLE-ARM TRIAL IN KRAS G12C MUTATED NSCLC FOR A TARGETED AGENT

Questions/Challenges:

• Prognosis of KRAS G12C mutated patient population?
 – Is current SOC benefit agnostic to KRAS G12C status?

• Changing landscape: More adoption of PD L(1) therapies in first-line
 – Role of PD L(1) therapy in 2nd line after failure in first-line?

• Is Docetaxel more effective in 2nd line after prior PD L(1) exposure?
 – Interpretation of single-arm trial in 2nd line?

• Combinations with PD L(1) therapy in 2nd line
 – Contribution of components
 • Randomized trial versus Single-Arm?
 – Role of biomarker
DESIGNING A SINGLE-ARM TRIAL IN KRAS G12C MUTATED NSCLC FOR A TARGETED AGENT

Opportunities:

Real World Data can inform

- Natural history of KRAS G12C mutated patients
 - Prognosis of KRAS G12C mutated patients
 - Efficacy of the non-targeted SOC

- Patient Characteristics
 - Relationship between KRAS G12C status and histology (squamous versus Non Squamous)
 - Overlapping actionable mutations
 - Distribution of biomarkers that are predictive for PD L(1) therapies

- Treatment Patterns
 - Chemo followed by PD L(1) versus PD L(1) followed by Chemo
 - Chemo-induction followed by PD L(1) maintenance
EXTENSIVE DISEASE (ED) SMALL CELL LUNG CANCER (SCLC)

• ED-SCLC is a very aggressive cancer that is usually diagnosed with advanced, often metastatic disease, posing a worse prognosis when compared to other lung cancers.

• SCLC space has changed little in 40 years, however innovation has begun to appear
 – Anti-PD-L1 therapy has recently changed SOC in 1st L SCLC, but with minimal impact on patient OS
 – SCLC is a growing health threat in JPAC while shrinking in the ROW

• New approaches are required to change the trajectory of advanced disease
 – 30-40% of ED-SCLC patients fail to reach 2L, those who do have limited options with minimal OS
 – Multiple failed trials in the 2L+ setting, including IO agents
DLL3 is an Inhibitory Notch Ligand Overexpressed in Small Cell Lung Cancer

- The Notch pathway has been implicated in regulating neuroendocrine- versus epithelial-cell differentiation in embryonic lung development and, more recently, in SCLC oncogenesis\(^1\)
- In neuroendocrine tumors, Notch signaling suppresses oncogenesis and tumor growth\(^1\)\(^-\)\(^3\)
- Unlike other mammalian Notch family members, DLL3 is predominantly located in the Golgi apparatus and inhibits Notch 1 signaling in cis\(^4\)
- In neuroendocrine tumors, including SCLC, DLL3 is highly upregulated and aberrantly expressed on the cell surface, making it a potential therapeutic target\(^3\)

ASCL1, achaete-scute complex homolog 1; DLL3, delta-like protein 3; SCLC, small-cell lung cancer.

Emerging SCLC Treatment Landscape

Extensive Stage Small Cell Lung Cancer

1L
- Chemotherapy: Platinum/Etoposide
- Atezolizumab + Platinum/Etoposide
- Tislelizumab, Toripalimab and HLX10 + Platinum/Etoposide
- Durvalumab + Platinum/Etoposide

1L maint.
- ROVA-T
- Niraparib (China only)
- PD-1+/−CTLA-4 (Nivo+/−Ipi)
- Atezolizumab Durvalumab
- Pembrol Durva/Treme
- Anti-PD(L)-1 + DLL3

2L
- Nivo ± Ipi or Pembro (US NCCN guidelines, Relapse < 6 months)
- Nivolumab
- Lurbinectedin (US AA 2020)
- ROVA-T
- DLL3 +/- Anti-PD(L)-1
- Topotecan
- Lurbinectedin ± Dox
- ROVA-T CLINICAL TRIALS
- Clinical trials

3L
- PD-1 (Nivo & Pembro) US only
- Single agent Chemotherapy
- DLL3
- Supportive Care
- Clinical trials

Atezo = atezolizumab; CT = chemotherapy; CTLA-4 = cytotoxic T-lymphocyte associated protein 4; durva = durvalumab; EP = etoposide/platinum; Ipi, ipilimumab; monoTX, monotherapy; nivo, nivolumab; PD-1 = programmed cell death-1; PD-L1 = programmed death-ligand 1; pembrol = pembrolizumab; ROVA-T = rovalpituzumab tesirine; sBLA, supplemental biologics application; SCLC = small cell lung cancer; treme = tremelimumab.

Positive OS reported
Current treatment options
Under study
Phase 3 failed / terminated
Future DLL3
INVESTIGATING DLL3 + NOVEL PD L(1) COMBINATION IN 2ND LINE ED-SCLC

• Strong biological rationale for DLL3 BiTE and PD L(1) combination

• Challenges:
 – DLL3 ADC failed in first and second-line
 – PD(1) not effective in second-line
 – Is there a difference between PD (1) and PD L(1)?
 – Novel-PD L(1) not extensively studied
 – SOC in second line is changing
 – Patients in second-line transitioning to prior PD L(1) exposed/progressed
DESIGN CONSIDERATIONS FOR PD L(1) COMBINATION IN SCLC

- Change in SOC in front-line resulting in most second-line patients being PD L(1) exposed.
 - Changing landscape

- Is a global trial feasible in second-line ED-SCLC?
 - SOC in US different than ROW in first-line

- Contribution of components, PD L(1) & DLL3.
 - PD L(1) arm in a second-line trial not feasible

- Benefit of PD L(1) combination may not manifest as a benefit in ORR, PFS and may need OS data

- Biomarker may define the role for monotherapy DLL3 versus combination
SUMMARY

• Definition of Progression on prior PD L(1) therapy should be standardized

• The role of Single-Arm versus RCT should be carefully evaluated in Early Development

• Real World Data have a powerful role in the design and interpretation of clinical trials